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Numerous image processing and computer graphics methods ma ke use of either explicitly computed strength of image edges , or
an implicit edge strength de�nition that is integrated into their algorithms. In both cases, the end result is highly a�e cted by
the computation of edge strength. We address several shortc omings of the widely used gradient magnitude based edge stre ngth
model through the computation of a hypothetical human visua l system (HVS) response at edge locations. Contrary to gradi ent
magnitude, the resulting \visual signi�cance" values acco unt for various HVS mechanisms such as luminance adaptation and
visual masking, and are scaled in perceptually linear units that are uniform across images. The visual signi�cance comp utation
is implemented in a fast multi-scale second generation wave let framework, which we use to demonstrate the di�erences in image
retargeting, HDR image stitching and tone mapping applicat ions with respect to gradient magnitude model. Our results s uggest
that simple perceptual models provide qualitative improve ments on applications utilizing edge strength at the cost of a modest
computational burden.

Categories and Subject Descriptors: I.3.3 [ Computer Graphics ] Picture/Image Generation; I.4.6 [ Segmentation ] Edge and
Feature Detection; I.4.2 [ Enhancement ] Filtering

Additional Key Words and Phrases: edge strength, visual per ception, HDR

1. INTRODUCTION

Localizing signi�cant variations in image luminance and chrominance, i.e. edge detection, has been a classical
problem in image processing. Similarly, edge aware image decompositions have been used in numerous
computer graphics applications such as image abstraction, detail enhancement and HDR tone mapping.
In both contexts, the essential component is an edge model, which in the formercase is used to produce
a map of image edges, and in the latter case is integrated into the image decomposition algorithm that
purposely avoids smoothing near strong edges.

The edge model serves two purposes: determining the location and strength of edges. The majority of the
methods proposed for edge detection involve smoothing and di�erentiation to locate edges. A measure of
edge strength is essential, since typically the result of these methods is \too many" edges, and the output is
only comprehensible after the removal \less important" edges thorough thresholding. Incidentally, gradient
magnitude based edge models are conveniently used in all but the most specialized edge detectors, because
one can locate edges by computing local maxima of the gradient magnitude, as well assimply use the

Author's addresses: T. O. Ayd�n, M. �Cad��k, K. Myszkowski, H. P. Seidel Stuhlsatzenhausweg 85 6 6123 Saarbrcken Germany
Permission to make digital or hard copies of part or all of thi s work for personal or classroom use is granted without fee pr ovided
that copies are not made or distributed for pro�t or commerci al advantage and that copies show this notice on the �rst page
or initial screen of a display along with the full citation. C opyrights for components of this work owned by others than AC M
must be honored. Abstracting with credit is permitted. To co py otherwise, to republish, to post on servers, to redistrib ute to
lists, or to use any component of this work in other works requ ires prior speci�c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481 ,
or permissions@acm.org.
c
 2010 ACM 1544-3558/2010/05-ART1 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.114 5/0000000.0000000

ACM Transactions on Applied Perception, Vol. 2, No. 3, Artic le 1, Publication date: May 2010.



1:2 � T. O. Ayd�n, M. �Cad��k, K. Myszkowski, H. P. Seidel

magnitude value at the edge location as a rough estimate of edge strength.
While existing methods are capable of localizing edges in a semantically meaningfulway, their performance

is directly in
uenced by the edge strength model they employ. The focus of this work is the computation of
edge strength rather than edge localization and semantics. Our central idea is that the magnitude of image
edges as perceived by the human eye, or the \visual signi�cance" of an edge, should be the guideline for edge
strength computation. In that respect, gradient magnitude as an edge strength measure encapsulates the well
known property of the Human Visual System (HVS) being sensitive to luminance di�erences, but ignores
other aspects such as visual masking and luminance adaptation. Earlier research[Ferwerda et al. 1997] has
demonstrated how image contrast is masked by other contrast patches that areof similar spatial frequencies.
Except perhaps simple stimuli designed for experimental purposes, visual maskingis expected to occur in
virtually any complex image and often to has a strong in
uence on perception. Disregarding the non-linear
perception of luminance, especially in HDR images, often leads to overestimatingbright image regions. As a
simple counter-measure, one can operate in log-luminance space [Fattal et al. 2002] that better approximates
perceived intensity in bright image regions, but fails to model the perception oflower luminance values that
is not linear in log-space.

We present an edge aware image decomposition framework based on second generation wavelets [Fattal
2009] that uses visual signi�cance as its edge strength metric.The contribution of this work is the use of
an HVS model to estimate visual signi�cance as a measure of edge strength, instead of gradient magnitude
that is commonly used in computer graphics applications. The HVS model computes physicalcontrast at
edge locations, and scales it through a cascade of simple and well known models of luminance adaptation,
spatial frequency perception and visual masking. The computed visual signi�cance is approximately scaled in
perceptually linear units, which implies that similar edge strength values acrossmultiple images correspond
to similar perceived strengths. In this paper, we �rst summarize related work (Section 2), then discuss the
edge avoiding decomposition framework (Section 3) and the HVS model (Section 4),than we validate the
model (Section 5) and show that the use of visually signi�cant edges results in qualitatively better outcomes
in image retargeting, panorama stitching and HDR tone mapping over gradient magnitude based approaches
(Section 6).

2. BACKGROUND

In this section we discuss related work on edge detection, computer graphics applicationsthat utilize edge
models, and HVS models for contrast perception. Due to the purely 2D nature of our technique, we do not
discuss any line drawing techniques that are capable of localizing edges in a semantically meaningful way,
but require 3D information about depicted objects.

Edge Detection
Edge Detection has been one of the fundamental problems in computer vision. In an earlyapproach, Marr and
Hildreth used the zero crossings of the Laplacian operator motivated by its rotational symmetry [Marr and
Hildreth 1980]. Later Canny focused on �nding an optimal di�erential operator that localizes sharp intensity
edges (which he approximated with the �rst derivative of a Gaussian), and introduced the use of non-maxima
suppression and hysteresis thresholding [Canny 1986]. Canny's method proved tobe very reliable over the
years and is still widely used. A notable improvement over earlier edge detectors is the use of multi-scale
analysis to detect smooth edges as well as sharper edges (see [Pellegrino et al. 2004] for an overview). The
steerable pyramid decomposition, while designed for general purpose feature detection, is shown to perform
better at small peaks of intensity by combining even and odd �lter responses [Freeman and Adelson 1991].
Lindeberg proposed an automatic scale selection method where the scale of edges is determined by �nding the
maximum of a strength measure over scales [Lindeberg 1996]. This method is later employed in Georgeson's
third derivative operator [Georgeson et al. 2007], which provides a morecompact response than the �rst
derivative. Some e�ort has also been made to detect color edges [Ruzon and Tomasi 1999]. For a detailed
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summary of edge detection techniques we refer the reader to [Ziou and Tabbone 1997].
Applications

Edge detection has found various applications in computer graphics such as guidance over image editing
operations [Elder and Goldberg 2001], stylization and abstraction of photographs [DeCarlo and Santella
2002] and texture 
attening [Perez et al. 2003]. The notion of edge importance understood as its \lifetime"
(essentially its presence) over increasing scales in the scale-space framework similar to [Lindeberg 1996]
has been used for stylized line drawings and structure-aware image abstraction [Orzan et al. 2007]. Edge-
preserving techniques such as the bilateral �lter have been used to decompose an image into a base and detail
layers and applied to HDR tone mapping [Durand and Dorsey 2002]. Recently, Farbman et al. [Farbman
et al. 2008] proposed another decomposition with multiple detail layers and presented applications to scale
selective feature enhancement and image abstraction. Fattal [2009] later showedthat comparable results
can be achieved much faster using a second generation wavelet decomposition with aspecialized weighting
function that avoids edges. Another approach to edge preserving �ltering is detecting the edgestrength
by computing the gradient of the input image, and reconstructing the image through anisotropic di�usion
[Perona and Malik 1990]. This method decouples edge detection and smoothing, but it is ine�cient due
to the iterative processing. This method has later been modi�ed by an edge strength measure based on
curvature change [Tumblin and Turk 1999]. Gradient domain operators such as[Fattal et al. 2002; Mantiuk
et al. 2006], while not explicitly stated, also utilize edges since gradient magnitude operator is essentially
an edge detector. Mantiuk et al.'s [2006] method has additionally a perceptual component in the form of a
simple contrast transducer.

Contrast Perception
The HVS characteristics involved in contrast perception are quite complex andhave been investigated in
numerous psychophysical studies. Even in the simple case ofdetection experiments, where the task is to
distinguish a sine wave grating from the uniform background, the resulting detection threshold depends on
many factors such as the background (adaptation) luminance, the grating's spatial frequency, orientation,
spatial extent, and eccentricity with respect to the fovea. These characteristicsare modeled by contrast sen-
sitivity functions (CSF) [Daly 1993; Barten 1999]. Other characteristics of contrast perception are observed
in the discrimination experiments, whose goal is to determine how the presence of one masking sine [Legge
and Foley 1980] or square [Whittle 1986] grating a�ects the discriminability of another test grating. In some
experiments, it turned out that the maskers of weak contrast actually facilitate the discriminability of test
grating, and the corresponding discrimination thresholds are even smaller than the detection threshold as
measured by the CSF. For high contrast (suprathreshold) maskers an elevation of discrimination thresholds
can be observed. This behavior is modeled bytransducer functions [Legge and Foley 1980; Wilson 1980;
Mantiuk et al. 2006], which convert physical contrast of an image to a hypothetical HVS response. Various
transducers have been successfully incorporated into the HVS models used in many computer graphics appli-
cations including texture masking simulation [Ferwerda et al. 1997], image appearance modeling [Pattanaik
et al. 1998], perception-based rendering [Bolin and Meyer 1998], and tone mapping and contrast enhancement
[Mantiuk et al. 2006; Mantiuk et al. 2008]. Often, transducer functions limit t heir modeling to intra-channel
masking assuming a certain contrast patch is solely masked by other contrast patches at the same spatial
frequency and orientations. A more comprehensive model by Watson and Solomon [1997] also comprises
masking from adjacent frequencies (inter-channel masking), in e�ect contrast patchesare subject to masking
from other contrast patches within a certain neighborhood. The neighborhood masking model in JPEG2000
is a simpler implementation of the same principle [Zeng et al. 2000].

3. EDGE AVOIDING FRAMEWORK

Objects appear di�erently depending on the scale of observation, and thus visual signi�cance of image
features depends on the image scale. Consequently, many image processing tools including edge detection
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Fig. 1. An illustration of the lifting scheme on a 1D signal. T he signal is decomposed into �ne and coarse parts by arbitrar ily
designating odd pixels as �ne, and even pixels as coarse comp onents. The �ne component is predicted from the coarse compo nent
using weights computed by the edge aware function ! , or simply by linear interpolation. The di�erence between t he original
�ne component and the predicted �ne component gives the deta ils. The details are then used to update the coarse component .
The same process is then iterated on the updated coarse signa l.

algorithms adopted multi-scale approaches. This has been physiologically justi�ed by the �nding that each
simple retinal cell responds to a certain bandwidth of spatial frequencies [Wandell 1995, Chapter 6].

Recent work [Fattal 2009] demonstrates use of second generation wavelets computedthrough the lifting
scheme [Sweldens 1997] in the context of edge avoiding multi-scale image decomposition. In this section we
give an overview of these concepts, for a detailed discussion refer to [Jansen and Oonincx 2005]. Contrary to
regular wavelets, second generation wavelet bases do not have to be merely translates and dilates of a single
pair of scaling and wavelet functions. This generalization enables data dependent �ltering through the use of
a weighting function that utilizes the information obtained from the local neighborhood changes the shape
of wavelet bases accordingly. In the context of edge avoiding wavelets (EAW) the weighting function assigns
lower weights to locations containing strong edges, thus the wavelet bases e�ectively \avoid" those locations.

The data dependent �ltering achieved by wavelet bases not relying on translation and dilation comes at
the cost of prohibiting the use of Fourier analysis for wavelet calculation. This issue has been addressed
by a discrete wavelet transform named the lifting scheme [Sweldens 1997]. The basic idea behind the lifting
scheme is tosplit a signal arbitrarily into �ne and coarse samples,predict �ne samples from coarse samples and
compute the details by subtracting �ne samples from their prediction, and update coarse samples using the
details. Fig. 1 illustrates the computation in 1D (using Uytterhoeven's coloring scheme [Uytterhoeven et al.
1997]). Advantages of the lifting scheme are fast, in place computation and easily invertible decomposition.

One can achieve edge aware behavior by simply executing a weighting function at each location that assigns
weights according to the edge strength at the local neighborhood. If the goal is to avoid edges, i.e. obtaining
detail components free of strong edges, this can be achieved by the function! in Equation 1, where m and
n are intensities at the current location and some neighboring pixel, respectively:

! (m; n) =
1

(j� (m; n)j � + � )
: (1)

The control parameter � is set to 0:8 as suggested in [Fattal 2009]. Divisions by zero are prevented by
setting � to 10� 5. We will use the function � later for the estimation of visual signi�cance; in the original
implementation it simply returns the di�erence of n and m. Such a decomposition is useful in contrast editing
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applications such as detail enhancement and image abstraction, since halo artifactsare prevented due to the
absence of strong edges in detail components. The opposite goal of extracting solely strong edges can be
achieved by simply using the inverse of ! . The detail components of the resulting decomposition closely
resemble the outcome of multi-scale edge detectors, which we utilize in context aware image retargeting and
panorama stitching applications (Section 6).

The straightforward extension to the second dimension is to repeat the 1D computation at both dimensions
(Fig. 2a). If an edge preserving weighting function is used, the results of this 2Ddecomposition are analogous
to X and Y gradients, and thus �t naturally into the edge detection pipeline. Another spl itting method
by [Uytterhoeven et al. 1997] with lower anisotropy produces better results coupled with an edge avoiding
weighting function (Fig. 2b).
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Fig. 2. The lifting scheme can be extended by repeating the 1D computation in X and Y directions (a), or using a lower
anisotropy red-black quincunx lattice (b). Only the predic tion step is illustrated for brevity.

4. HUMAN VISUAL SYSTEM MODEL

We extend the EAW framework (Section 3) with an HVS model, where we modify the weighting function
(Equation 1) that penalizes strong di�erences of image pixel values by computing visual signi�cance of
the luminance di�erences. The HVS model takes physical image luminance as input, therefore8-bit images
should be mapped to display luminance and HDR images should be calibrated to scene luminance before
processing. The luminancecontrast C is approximated in the EAW framework by dividing the �ne samples
by the local mean of the predictions of immediate neighborsK (2 and 4 for X-Y splitting and red-black
splitting, respectively):

C =
F ine

( 1
K )

P
K P rediction k

� 1: (2)

Repeated at each scale, this formulation is similar to the low-pass contrast in [Mantiuk et al. 2006]. The
advantage of a contrast based edge strength measure over a gradient based measure is illustrated in Fig.3
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Fig. 3. Edge strength predictions utilizing physical contr ast account for the e�ect of background luminance level. The perceived
strength of step edges 200-201 cd=m2 and 50-51 cd=m2 (left) are predicted to be the same by the gradient based meth od, whereas
a contrast based method correctly predicts the weaker perce ived strength of the �rst pro�le.

Note that the contrast C is computed solely using physical luminance. As the next step we scaleC by
computing the sensitivity of the visual system to obtain contrast in perceptually linear units. Two prominent
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factors that a�ect contrast sensitivity are its spatial frequency (� ), and the adaptation luminance (L a).
These e�ects can easily be observed in the Campbell-Robson chart. We use the CSF from the Visible
Di�erences Predictor [Daly 1993] with corrections as indicated in [Aydin et al. 2008, Equations (10, 11)] to
obtain the perceptually linearized contrast C0 = C�CSF(�; L a). Fig. 4 shows an example where the di�erence
in edge preserving smoothing is mainly due to the scaling of contrast by the CSF. This behavior is typical in
HDR images, where the contrast magnitudes at very bright and very dark image regions are overestimated
by the frameworks without perceptual components. As a result, the edges of the bright window are avoided
unlike the edges at the window's frame (Fig. 4 center). The CSF's scaling results in a more uniform smoothing
over edges with similar magnitude of visibility (Fig. 4 right).

Fig. 4. An illustration of the e�ect of luminance adaptation (the practical utility of our model is shown in Section 6). Th e
original HDR image (left), smoothing with EAW method (cente r), and smoothing with EAW method using visually signi�cant
edges (right). The strength of edges of the bright window are overestimated by EAW method in the absence of a model of
luminance adaptation. All images are tone mapped [Reinhard et al. 2002] for display purposes.

Masked coefficient

Intra-channel neighborhood

Fig. 5. An illustration of neighborhood masking on detail la yers of a multi-scale decomposed image. At each image locati on,
visual masking is computed as a function of the immediate 8 ne ighboring pixels. The same neighborhood spans a larger area in
coarser scales (visualized by yellow boxes).

Visual masking is the decrease in visibility of a contrast patch in the presence of other contrast patches
of similar spatial frequencies. One way of modeling this e�ect is by computing athreshold elevationmap for
each visual channel, which when divided by the contrast at that channel accounts for theincrease in detection
thresholds (thus, decrease in sensitivity). This method trades o� accuracy at supra-threshold contrast levels
for better prediction near the threshold, and has been used in image quality assessment metrics for distortion
detection. On the other hand, the transducer model is focused on perception of supra-threshold contrasts
and thus preferred in discrimination tasks. The model relies on a transducer functionthat is constructed by
iteratively summing up contrast detection thresholds. The use of a transducer functionin computer graphics
context is demonstrated in [Ferwerda et al. 1997]. A more comprehensive transducer model [Watson and
Solomon 1997] also comprises masking from adjacent frequency channels (inter-channel masking). In this
model, since the lower frequency channels contain information from the spatial neighborhood, a contrast
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patch at a certain location is e�ectively masked by neighboring contrast patches (See Fig. 5 for an illustration
of neighborhood masking.)
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Fig. 6. The visual masking due to the random noise modulated b y image luminance in the test stimulus (left), results in low er
perceived edge strength then the gradient magnitude (cente r), as predicted by our method (right).

Fig. 7. The e�ect of contrast masking in a complex image. The o riginal image (left), smoothing with EAW method (center),
and smoothing with EAW method using visually signi�cant edg es (right). The masking model reduces the strength of the fac ial
hair edges due to the presence of hair in the local neighborho od.

While the visual masking due to the local neighborhood is often not signi�cant for isolated test stimuli,
natural images tend to have \busy", textured regions where the visibility of edges are notably lesser than
non-textured regions. To account for that, our � function (Equation 1) comprises the point-wise extended
masking model [Zeng et al. 2000] which, in addition to a compressive non-linearity, also accounts for visual
masking from the local neighborhoodK :

R =
sign(C0)jC0j0:5

(1 +
P

K jC0
k j0:2)

: (3)

The e�ect of visual masking on a simple stimulus is illustrated in Fig. 6. Figure 7 shows that the involvement
of the point-wise extended masking model results in a perceptually uniform smoothing near high-masking
regions. Computation of the hypothetical HVS response R is the �nal step in function � in EAW the
framework.

5. MODEL CALIBRATION { PERCEPTUAL EXPERIMENT

To validate and calibrate the proposed edge perception model, we conducted a simple threshold-level percep-
tual experiment. The motivation for this is twofold: �rst, we aim to cal ibrate the implemented supra-threshold
transducer model described above (Equation 3) for threshold stimuli; second, as noted by [Whittle 1986],
discrimination thresholds for spatially separated patches should not be generalized for perceiving edges,
thus there is a lack of usable experimental data. Furthermore, the CSF curves [Daly 1993] re
ect measure-
ments using the Michelson's de�nition of contrast, which is slightly di�erent from the implemented de�nition
contrast (Equation 2).
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In our experiment, two adjacent grayscale patches were presented on a calibrated display device. The
luminance of the left patch is kept constant during each trial, whereas the luminance ofthe right patch
was modulated according to the responses of the subject. Each subject was asked whetherthere is a visible
edge between the two patches or not. The luminance of the right patch was decreased if theresponse was
positive, and increased if the response was negative. The step sizes were determined by following the PEST
procedure [Taylor and Creelman 1967]. A random noise pattern was presented for 1s between stimuli to
avoid afterimages, memory e�ects, etc. Each trial ended once the standard deviation of the subject's last 6
responses were below the minimum step size (0:01cd=m2) or if there were more than 30 responses collected.
The experiment comprised 10 trials for each subject, where the initial luminance of the left patch at each
trial is selected by randomized sampling from the luminance range 1:5 � 400cd=m2.
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Fig. 8. Experimental results. Left: measured edge detectio n luminance thresholds as a function of adaptation luminanc e L a ,
right: model predictions before (red dots) and after the cal ibration (green dots). An ideal model response is constantl y 1 JND
for the threshold data (dashed line).

The stimuli were displayed on a calibrated Barco Coronis MDCC 3120 DL, a 10-bit 21-inch hi-precision
LCD display, in its native resolution 2048� 1536 pixels, the maximal display luminance was 440cd=m2. The
display response was measured by the Minolta LS-100 luminance meter. The experimentation room was
darkened (measured light level: 1 lux), and observers sat approximately 70 cm from the display. The total
of 22 observers took part in our experiment. There were both male and female observers, and all of them
reported to have normal, or corrected-to-normal vision. Each subject was verbally introduced to the problem
before the experiment.

The measured edge perception thresholds, see Fig. 8 (left), were approximated by thesecond order polyno-
mial function (blue curve). Using the polynomial function, we generated 100 threshold stimuli as the inputs
for model calibration procedure. We assume that the model output for each stimulus atthe threshold level
should be R=1 JND. Therefore, we run the model for each of 100 input stimuli to obtain the error function,
see Fig. 8 (right). The threshold prediction of the uncalibrated model (red dots) was quite solid, so that
we decided to perform the calibration by means of a simple linear function which should not a�ect the
performance of the model for supra-threshold stimuli. The calibration was achieved by dividing the masking
model by the calibration function (blue curve in Fig. 8 (right)):

R0 =
R

0:0002L a + 0 :2822
; (4)

where L a is the adaptation luminance in cd=m2.
As the masking model (Equation 3) was veri�ed in JPEG 2000 applications, wedid not calibrate it

for supra-threshold data. However, we believe that the supra-threshold performanceis also improved as a
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consequence of the threshold calibration, and the precision of the model is more than su�cient for various
applications as illustrated in the next section.

6. APPLICATIONS

In the previous sections we showed that the use of visual signi�cance results in smoothing that better
correlates perceived strength of edges. However, applications like image abstraction through edge preserving
smoothing or detail enhancement produce images whose quality is judged aesthetically. Thus, despite the
obvious di�erences between the perceptual and non-perceptual methods, one can not objectively prove that a
visually signi�cant edge model produces better results. In this section we present threeapplications that rely
on importance of image features, and thus the improvement through a perceptual model can be demonstrated
through examples. All results are generated using the extended EAW framework. The edgemaps used in
image retargeting and panorama stitching are generated by using the inverse ofEquation 1 as discussed in
Section 3.

6.1 Image Retargeting

Several techniques were recently proposed to allow content-aware image and video retargeting [Avidan and
Shamir 2007; Wang et al. 2008; Rubinstein et al. 2009]. The central part of those approaches is usually
an importance map (energy function) that describes the importance of areas in the image. Using the map,
the retargeting operator then preserves the important areas at the expense of less-important ones. Several
possibilities of the importance map construction were proposed [Avidan andShamir 2007], however a simple
Sobel operator was utilized in many cases.

The visually signi�cant edges are a natural candidate to construct such importance map in a perceptually
more convincing way. We show the results of seam carving image resizing operator [Avidan and Shamir
2007] using traditional importance map and the new map calculated by our techniquein Figures 9 and 10.
The traditional technique removes more visually signi�cant areas than when we build importance map using
our method. Our results indicate that the di�erence between both methods is especially signi�cant if the
visually signi�cant details are located in dark image regions. While the perception of brighter details (> 100
cd=m2) can be approximated by a simple compressive logarithmic function, our methodhas the advantage
of faithfully modeling perception in all luminance levels and taking masking into account, and thus overall
produces more reliable results (Fig. 10 (c) and (d)). In fact, the success of particular importance map
construction varies with the input images and the absence of a universal retargeting operator led to the
proposal of a hybrid approach combining several techniques [Rubinstein et al. 2009]. Our results suggest
that visual signi�cance can be guideline in importance map computation and can provide a basis for more
sophisticated retargeting operators.

An advantage of our approach is that it allows perceptually based retargetingon not just ordinary, but also
high dynamic range images. In images consisting of mostly bright regions (> 100cd=m2) a simple logarithmic
non-linearity may be su�cient to approximate the perception of luminance. However, t his method is less
precise in darker regions where Weber's law doesn't hold (compare Fig. 10 (f) and (g)). Moreover, visual
masking may have a signi�cant e�ect in images containing many details (Fig. 9).

That said, we found that �rst producing a tone mapped \dual" image, and then performing the retargeting
on the original HDR image using the edge strengths computed on the dual image to work well in some cases.
However, the type of tone mapping operator and suitable parameter setting is anopen question, and requires
manual interaction in comparison to our fully automated method.

6.2 HDR Tone Mapping

As mentioned in experimental evaluations [Kuang et al. 2007;�Cad��k et al. 2008], the goal of tone mapping
is manifold: some tone mapping operators are focused on compressing the imageluminance while preserving
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Fig. 9. HDR image shrinking by seam carving (150 pixels horiz ontally). First column left: original HDR image. Middle: re sult
when the Sobel operator is used for importance map construct ion. Right: result using the proposed visually signi�cant e dges.
Images are tone mapped [Drago et al. 2003] for the display pur poses. Second column: edge strength maps. Left: edges detected
by Sobel operator in the input HDR image. Right: visually sig ni�cant edges { note the di�erences in absolute values and in the
ratios of edge strengths (due to the JND scaling), and the str uctural di�erences in the edge map (due to the masking).
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(e) (f) (g)

Fig. 10. HDR image shrinking (400 pixels horizontally) by se am carving. First row: (a) original HDR image, (b) Sobel oper ator
overestimates the strength of edges in the sky, which result s in carving of the visually important palm tree, (c) results are similar
if the Sobel operator results are compressed by the logarith m function, (d) the proposed method results in less distorte d image
appearance, especially evident at the tree's body. Images a re tone mapped [Drago et al. 2003] for the display purposes. S econd
row: (e,f,g) Edge strength maps for (b),(c),(d).

the overall scene appearance. For example, the outcome of such an operator applied toa dark scene would
not reproduce the details that are not visible by the human eye due to insu�cient light ing. The other
group of tone mapping operators on the other hand focuses on preserving as many scene details as possible
irrespective of their visibility magnitude.

The tone mapping from the original edge avoiding framework [Fattal 2009] can be classi�ed as strictly
detail preserving. In the spirit of previous decomposition-based approaches [Tumblinand Turk 1999; Fattal
et al. 2002; Durand and Dorsey 2002; Farbman et al. 2008], the technique 
attens the coarsest scale of the
EAW image decomposition by factor � and the other scales are progressively compressed so that the wavelet
coe�cients in a coarser scale are decreased more than in a �ner scale (by factor
 k ; where k is the scale).
This corresponds to an observation that the coarser scales often contain very high magnitude di�erences and
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should be therefore compressed much more than the �ner scales (details) that we usually aim to preserve. The
technique operates onlogarithm of the input luminance that can be thought of as a simple approximation
of human luminance perception, but having not accounted for other prominent perceptual phenomena (e.g.
the perception of contrast), the results look unnatural, see Fig. 11 (left).

The results produced by the technique mentioned above may be suitable for certain scenarios (e.g. the best
reproduction of details), but not for reproducing the appearance of a scene. However, we can achieve much
better results (in this sense) by replacing the logarithm function with the perceptual framework proposed
in this paper. We thus obtain image decomposition coe�cients that are closer to the human visual system
response (accounting for phenomena described in Section 4) and those are then compressed ina same way
as above for the display purpose. As expected, the results are then more natural renditions of the original
HDR images and preserve the scene appearance, see Fig. 11 (right).

Original with HVS Model Original with HVS Model

Fig. 11. HDR image tone mapping without (left columns) and wi th our HVS model (right columns). The original method [Fatta l
2009] preserves as many image details as possible at the cost of overall scene appearance. Our method is more balanced in t erms
of reproduction of scene appearance and detail preservatio n.

6.3 Panorama Stitching

An HDR panorama generation approach proposed by Ward [2006] makes use of edge maps to stitch adjacent
images of a scene. In this method images are decomposed into two layers: a low pass layer that corresponds
to 1=16th of the image's original resolution and a high frequency layer. The low frequency layers of adjacent
images are blended together using a sinusoidal weighting function, whereas the high frequencies are spliced
at locations containing strong edges. The method is guided by a compound edge mapE obtained as a
combination of edge maps of pairs of overlapping images (E lef t ; E right ). We adopted the following technique
to construct the compound edge map:

E = max( E lef t � E right ; 0): (5)

In other words: if there is a strong edge in the left image, but not in the right image, then this is possibly due
to a misalignment and should not be preferred for splicing. On the other hand, locations containing strong
edges with the same sign in both images are strong candidates for splicing.

For panorama stitching application, we inverted the neighborhood masking inour model, so that it am-
pli�ed the masked edges. This is motivated by observation that the masked edges also mask the seams
so that they are less disturbing in the �nal panorama. We empirically found that mult iplying R with
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(2 � Neighborhood masking )2 to work well in practice. We compare the results obtained using our tech-
nique and the traditional Sobel operator in Fig. 12. The source images were inverse tone mapped prior to
processing by simple contrast stretching.

1 2 3 4

1

23

4

1 2 3 4

1

23

4

Fig. 12. An HDR panorama stitched from three di�erent, not pr ecisely aligned pictures using Ward's technique [Ward 2006 ].
Top: the result obtained using Sobel operator, Bottom: the re sult using the proposed visually signi�cant edges. The imag es are
tone mapped [Reinhard et al. 2002] for display purposes.

7. CONCLUSION

We presented a method that localizes image edges and scales their strength proportionally to their visual
signi�cance. We discussed a simple and e�cient HVS model that accounts for prominent features of the visual
system such as luminance adaptation, spatial frequency sensitivity and visual masking. In our experience the
visual signi�cance computation in EAW framework increases the edge-map computationtime by 30 � 50%.

The HVS model is integrated into the edge avoiding wavelet framework which provides a convenient
basis for edge preserving image decomposition, and also extraction of edges by inverting the edge-stopping
criterion. The choice of the framework is not crucial for specialized applicationsthat rely either solely on
image decomposition or edge extraction. For example, the HVS model can be appliedto multi-scale image
gradients for the former type of applications, or to an image pyramid obtained through bilateral �ltering
for the latter type of applications. The wavelet framework is convenient in the sense that it can serve both
purposes in one framework, and is faster than others in decomposition.

The main limitation of this work is the absence of models for higher level mechanisms of the visual
system such as gestalt properties and prior knowledge. Unfortunately modeling those mechanisms is not
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trivial because of their complexity and consequently the hardness of designing reproducibleexperimental
setups to determine their e�ects. Moreover, it has been shown that the shape of the CSF becomes 
atter at
suprathreshold contrast levels [Georgeson and Sullivan 1975]. A more precisetreatment of supra-threshold
contrast sensitivity could involve implementing the transducer given in Watson and Solomon [1997], but
it is not clear how to perform the inhibitory pooling involved in this model wi thin the second generation
wavelet framework without notably increasing the computation time. The presented model, along with similar
suprathreshold models used in computer graphics context, does not account for this behaviour for e�ciency
reasons.

In the light of recent work [Cole et al. 2008] that shows luminance edges are infact prominent image
features, we believe that the visually signi�cant edges are good candidates for determining the richness
of detail in images. Such a measure, combined with others such as image brightness, overall contrast and
colorfulness can provide a good estimate of image quality in the absence of a reference image (no-reference
image quality assessment). As a future direction we would like to investigate the possibility of designing such
a metric that utilizes visually signi�cant edges.
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